На главную

Нейрокомпьютеры


Нейрокомпьютеры

Введение

Наряду с развитием персональных ЭВМ, сетей ЭВМ и

высокопроизводительных суперЭВМ традиционной архитектуры в последние годы

существенно повысился интерес к разработке и созданию компьютеров

нетрадиционного типа и, прежде всего, нейрокомпьютеров. Связано это с тем,

что, несмотря на высокую производительность современных суперЭВМ,

приближающуюся к предельно допустимой, все еще остается много практически

важных проблем, для решения которых нужны более мощные и более гибкие

вычислительные средства. Они необходимы для глобального моделирования

процессов в экосистемах, при решении задач нейрофизиологии, искусственного

интеллекта, метеорологии, сейсмологии и т. п. Необходимы они и при

создании систем управления адаптивных интеллектуальных роботов.

Бортовые ЭВМ таких роботов должны воспринимать большие объемы

информации, поступающей от многих параллельно функционирующих датчиков,

эффективно обрабатывать эту информацию и формировать управляющие

воздействия на исполнительные системы в реальном масштабе времени. Более

того, управляющие компьютеры интеллектуальных роботов должны оперативно

решать задачи распознавания образов, самообучения, самооптимизации,

самопрограммирования, т. е. те задачи, которые весьма сложны для

традиционных ЭВМ и суперЭВМ. Поэтому остается актуальной необходимость в

поиске новых подходов к построению высокопроизводительных ЭВМ

нетрадиционной архитектуры. Среди таких подходов центральное место занимает

нейрокомпьютерный подход.

Его суть состоит в разработке принципов построения новых мозгоподобных

архитектур сверхпроизводительных вычислительных систем – нейрокомпьютеров.

Подобно мозгу, такие системы должны обладать глобальным параллелизмом,

самообучением, самооптимизацией, самопрограммированием и другими свойствами

биологических систем. Ожидается, что нейрокомпьютеры в принципе смогут

решить многие из тех проблем, которые сдерживают дальнейшее развитие научно-

технического прогресса.

По современным представлениям нейрокомпьютер (НК) – это система,

предназначенная для организации нейровычислений путем воспроизведения

информационных процессов, протекающих в нейронных сетях мозга. Структурной

единицей НК служит специфический процессор – нейропроцессор (НП),

имитирующий информационное функционирование отдельных нервных клеток –

нейронов. Нейропроцессоры связываются друг с другом в нейроподобные

структуры, имитирующие нейронные сети мозга. По этой причине, чем точнее НП

воспроизводит информационную деятельность нервных клеток, и чем ближе

конфигурации искусственных нейронных сетей к конфигурациям сетей

естественных, тем больше шансов воспроизвести в НК самообучение,

самопрограммирование и другие свойства живых систем.

С точки зрения вычислительной техники, каждый нейропроцессор

представляет собой специализированное процессорное устройство, реализуемое

программным, аппаратным или программно-аппаратным способом. В то же время

это устройство имеет ряд особенностей. Во-первых, НП воспроизводит не

произвольно выбранный набор операций, а только те операции, которые

биологически обусловлены и необходимы для описания процессов переработки

информации в нервных клетках. Во-вторых, при аппаратной реализации

нейропроцессоров они, подобно нейронам мозга, связываются друг с другом

индивидуальными линиями передач последовательных кодов. При большом числе

процессорных элементов такая связь более эффективна, чем связь

нейропроцессоров по общей шине или посредством индивидуальных параллельных

шин.

Эти и другие особенности НП позволяют выделить их в самостоятельный

класс процессорных устройств вычислительной техники.

1. Нервные клетки и их модели

Нервная система (НС) человека и животных является важнейшей

консолидирующей системой организма. Ее основная функция заключается в

поддержании внутренней гармонии организма и в организации его

приспособительной деятельности в изменяющихся условиях внешней среды. НС

имеет клеточную структуру и состоит из клеток – нейронов, сгруппированных в

нейронные ансамбли и сети. Центральным отделом нервной системы является

головной и спинной мозг.

С точки зрения кибернетики мозг представляет собой информационно-

управляющую систему, которая при помощи рецепторов воспринимает информацию

о внешней среде, обрабатывает эту информацию на основе генетической

программы и индивидуального опыта, а также формирует управляющие

воздействия на эффекторные (исполнительные) системы организма.

Данной структуре соответствует хорошо известная специализация нервных

клеток на сенсорные (рецепторные), вставочные (интернейроны) и эффекторные

(мотонейроны) нейроны. Рецепторные нейроны воспринимают энергетические

воздействия внешней среды той или иной модальности (световые, акустические,

тактильные и т. п.) и преобразуют их в импульсные потоки, передаваемые

интернейронам. Взаимодействующие друг с другом интернейроны осуществляют

обработку поступившей информации, а мотонейроны передают результаты этой

обработки непосредственно на исполнительные системы организма (мышцы,

сосуды, железы внутренней секреции и т. п.).

По форме нервные клетки существенно отличаются друг от друга, однако

большинство нейронов имеет древовидную структуру, состоящую из компактного

тела с рядом отростков (волокон). Короткие ветвящиеся веточки называются

дендритами, а длинный, расщепляющийся на терминальные волокна отросток

называется аксоном. Тело клетки (сома) имеет микроскопические размеры от 5

до 100 микрометров, а длина ее отростков может достигать десятков

сантиметров. Например, у крупных млекопитающих и человека аксоны некоторых

клеток при толщине от 10 до 20 мкм имеют длину до метра. Однако и сома и ее

отростки представляют собой единое целое, покрытое общей оболочкой

(мембраной). Как и любая другая клетка организма, нейрон и его отростки

имеют единую внутриклеточную среду, общий генетический аппарат и общую

систему поддержания жизнедеятельности.

Специфическая особенность нервных клеток заключается в способности

воспринимать, преобразовывать и передавать на другие клетки нервное

возбуждение в виде нервных импульсов. Входные импульсы поступают на

дендриты или сому и оказывают на клетку либо возбуждающее, либо тормозное

воздействие. В те моменты, когда суммарное возбуждение клетки превышает

некоторую характерную для нее критическую величину, называемую порогом, в

области аксона возникают нервные импульсы – спайки или, как их еще

называют, потенциалы действия. Возникнув, спайк бездекрементно (без

затухания) распространяется по аксону, поступает на дендриты других клеток

и вызывает их возбуждение или торможение. Такая связь называется аксо-

дендритной, причем возбуждающий или тормозящий характер воздействия

нервного импульса определяется свойствами контакта двух клеток. Этот

контакт называется синаптическим, а пространство между мембранами

контактирующих клеток называется синаптической щелью.

Количество синаптических входов у отдельного интернейрона достигает

150 тысяч. Поэтому общее число межклеточных контактов очень велико.

Например, в мозге человека при 1011 нейронах количество связей между ними

оценивается астрономическим числом 1014. Если дополнительно учесть, что

синаптические связи имеют электрический и химический характер, что наряду с

аксо-дендритными связями возможны синаптические контакты между дендритами,

сомами и аксонами различных клеток, что каждая связь может быть

возбуждающей или тормозной, а также то, что эффективность синаптических

связей в процессе жизнедеятельности меняется, то грандиозная сложность

нейронных сетей у высокоразвитых животных и человека становится очевидной.

В настоящее время установлено, что мозг, судя по всему, основан на

принципе относительно жестко запаянного блока, состоящего из сложно

организованных нейронных сетей, работающих в миллисекундном диапазоне.

Более детальное изучение этих сетей осложняется специфическими свойствами

нервной ткани, содержащей помимо нервных клеток и другие клетки, которые

поддерживают нейрон механически и участвуют в процессах их метаболизма и

проведения спайков.

В целом, нервная ткань представляет собой бесцветную студенистую

массу, в которой даже под микроскопом трудно различить отдельные нейроны и

состоящие из них сети. Поэтому в современной нейроанатомии применяют

специальные методы окрашивания нервной ткани. В частности, используются

красители, которые избирательно воздействуют лишь на некоторые нейроны и

окрашивают их целиком. Окрашенная таким образом ткань замораживается,

разрезается на тонкие слои и изучается под микроскопом. В процессе изучения

удается выделить отдельные нейроны в сетях плотно упакованных нервных

клеток, волокна которых тесно переплетены в густую чащу с промежутками 0,01

мкм. Более того, удается не только различать отдельные клетки, но и

находить их связи друг с другом, как в локальных областях нервной ткани,

так и в различных, далеко отстоящих друг от друга частях мозга. Однако

получаемые при этом сведения не являются полными и не позволяют делать

однозначных выводов о конфигурациях и законах функционирования изучаемых

нейронных сетей. Эти сведения приходится дополнять данными других

исследований, а именно тех, которыми занимается нейрофизиология.

Основным нейрофизиологическим подходом к исследованию мозга в

настоящее время служит микроэлектродная методика. Ее суть заключается в

том, что в живую ткань мозга вживляются микроэлектроды, с помощью которых

регистрируется электрическая активность отдельных клеток. Однако

использование этой методики для изучения высокоразвитых животных связано с

рядом трудностей. Размеры электродов по сравнению с микроскопически малыми

телами клеток велики, а возможности их миниатюризации ограничены. Поэтому

микроэлектродные исследования могут искажать нормальную работу изучаемых

структур. Вживление электродов осуществляется вслепую и не всегда ясно,

работу каких клеток характеризуют снятые с них сигналы. Кроме того, клеток

много, а электродов мало. Поэтому получаемая с их помощью информация

является фрагментарной.

С целью преодоления отмеченных трудностей в нейробиологии вообще и в

нейрофизиологии в частности широко применяют метод биологического

моделирования. В соответствии с этим методом для изучения сложных структур

мозга высокоразвитых животных используют достаточно простые нервные системы

таких беспозвоночных, как черви, моллюски, кальмары, раки и т. п. Нейронные

структуры беспозвоночных содержат сравнительно мало нейронов, упакованных в

нервные узлы - ганглии. Ганглии, в свою очередь, содержат от 100 до 1000

клеток. Сами клетки у беспозвоночных крупнее, чем у млекопитающих, а их

положение в ганглиях и межнейронные связи более определены.

Рассмотренный подход к изучению нервной системы внешне напоминает

хорошо известный в технике метод физического моделирования. В соответствии

с этим методом сложный для изучения объект заменяется менее сложным, но

эквивалентным исходному по сути изучаемых явлений.

Однако в случае нейробиологии о собственно физическом моделировании

можно говорить лишь в том случае, когда исследуются такие свойства нервной

ткани, как электропроводность внутриклеточной среды, электрическая емкость

и сопротивление мембран, механизм генерации спайков и т. п. Эти свойства,

судя по всему, являются фундаментальными и не зависят от вида животного. В

то же время механический перенос данных о структуре и свойствах нейронных

сетей простых животных, например беспозвоночных, на нервную систему

высокоразвитых млекопитающих вряд ли является корректным. Поэтому для

изучения информационных процессов в сложных нейронных сетях необходимы

современные методы математического и кибернетического моделирования. Причем

результаты экспериментов на простых организмах могут использоваться в

данном случае в качестве исходных гипотез для построения адекватных

кибернетических моделей мозга.

Такой подход позволяет уже сейчас создавать искусственные нейронные

сети и строить кибернетические модели информационных процессов в мозге

более сложных животных вплоть до человека. Учитывая то, что экспериме6нты

на мозге людей нельзя проводить по морально-этическим соображениям, путь

создания кибернетических моделей с целью получения экспериментальных

сведений о структуре и функциях человеческого мозга представляется весьма

перспективным. Конечной целью при этом могут служить не только новые

сведения о мозге, о механизмах его самооптимизации, самоорганизации,

самопрограммирования, но и новые идеи, необходимые для построения

нетрадиционных мозгоподобных суперЭВМ – нейрокомпьютеров.

2.Математическая модель информационных процессов в нейроне

Согласно мембранной теории возбуждения нервных клеток, закон изменения

мембранного потенциала аксона может быть описан следующим дифференциальным

уравнением первого порядка:

где P(t) – мембранный потенциал участка аксона; H – локальный сдвиг

мембранного потенциала за счет поступления внешнего воздействия; C –

удельная емкость мембраны; q[P(t)] – проводимость мембраны участка аксона.

Экспериментально установлено, что если мембранный потенциал P(t)

остается ниже некоторой пороговой величины ?П, то проводимость мембраны

практически не меняется. Однако в те моменты времени, когда под влиянием

внешних раздражителей H потенциал P(t) достигает величины порога ?П,

электрически управляемые белки открывают свои шлюзы, что приводит к резкому

изменению проводимости мембран. Аналитически данное обстоятельство можно

выразить следующим образом:

где qK(t) – переменная проводимость мембраны по отношению к ионам калия;

qNa(t) – переменная проводимость мембраны по отношению к ионам натрия.

Однако ввиду того, что аксон является составной частью клетки, а его

мембрана является клеточной мембраной, вполне убедительно мнение о

возможности распространении этой теории на нейрон в целом, и в частности,

на аксонный холмик, где осуществляется запуск потенциала действия.

При таком подходе в качестве правой части уравнения (1) можно

использовать не только локальный сдвиг мембранного потенциала H, но и

внутриклеточный потенциал V(t), формируемый за счет синаптических процессов

в дендритном дереве и соме нейрона. Наиболее распространенная

математическая модель данного процесса представляет собой алгебраическую

сумму произведений всех входных потенциалов действия на соответствующие

синаптические веса:

где Vвхj(t) – выходной потенциал действия, поступающий на j-й синапс; N –

количество синаптических контактов нейрона; (j – вес j-го синапса.

Если синапс возбуждающий, то соответствующий ему весовой коэффициент

имеет положительный знак, в противном случае - отрицательный. Абсолютная

величина этого коэффициента учитывает эффективность синапса (размеры

синаптического контакта, место его расположения на дендрите или соме,

расстояние от аксонного холмика и т. п.).

Учитывая отмеченные обстоятельства, математическую модель

электрической активности нервных клеток, отражающую их информационную

деятельность, можно представить в следующем виде:

В принципе модель (4) может быть использована для построения

искусственных нейронов и нейронных сетей. Однако ее техническая реализация

существенно затруднена нелинейным характером уравнения (1).

С целью преодоления этой трудности воспользуемся соотношением (2) и

представим уравнение (1) в виде совокупности двух выражений, а именно

линейного уравнения подпороговых изменений мембранного потенциала P(t)-(п (

0 и надпорогового процесса формирования потенциала действия в виде функции

f(t), аппроксимирующей форму спайка:

где ti – моменты возникновения спайков, т. е. те моменты времени t, при

которых выполняется нестрогое равенство P(t)- (п ( 0.

В качестве кривой, форма которой близка к форме нервного импульса,

может служить график хорошо известной в теории связи функции вида:

где T – период синусоидальной зависимости, стоящей в числителе.

Учитывая свойства функции f(t), нервный импульс можно описать

следующим образом:

где ti – моменты времени, определяющие начало генерации очередных нервных

импульсов (i=0, 1, 2,...); Vи - амплитуда нервного импульса; tи

–длительность нервного импульса.

При вычислении моментов ti необходимо воспроизводить в модели

абсолютную и относительную рефрактерность нервных клеток. Суть абсолютной

рефрактерности заключается в том, что во время tи генерации спайка нейрон

абсолютно невозбудим для приходящих в это же время входных воздействий, а в

последующий период относительной рефрактерности возбудимость нейрона хотя и

затруднена, но принципиально возможна.

С целью моделирования рефрактерности введем такой переменный во

времени порог ?(t), максимальное значение ?и которого в моменты ti

нарушает условие возбуждения и удерживает нейрон некоторое время в

абсолютно невозбудимом состоянии, после чего ?(t) постепенно возвращается к

величине ?п в соответствии с уравнением

где ? - постоянная времени мембраны нервной клетки; ?п – порог покоя; ?м

– максимально возможное значение порога.

Условие возбуждения нейрона примет следующий вид:

P(t) - ?(t) ( 0

(7)

С учетом отмеченных обстоятельств получаем следующую математическую

модель информационных процессов в нервной клетке:

Первое уравнение системы (8) воспроизводит процесс пространственной

суммации возбуждающих и тормозных входных воздействий Vвх(t), поступающих в

момент времени t на все синаптические контакты нейрона. Второе уравнение

моделирует процесс входной суммации входных воздействий в области аксонного

холмика и отражает кумулятивные свойства нейрона. Третье, четвертое и пятое

соотношения описывают процесс генерации спайков с учетом условия

возбуждения нейрона (7), его рефрактерности и формы генерируемых импульсов.

Рассмотренная модель (8) довольно точно отражает современные

нейрофизиологические представления об информационной деятельности нервных

клеток. Кроме того, она проще исходной модели (4), поскольку не содержит

нелинейного уравнения (1). Все это позволяет использовать ее в качестве

основы для построения искусственных нейронов и нейронных сетей,

воспроизводящих подпороговые и надпороговые процессы спайковой активности с

учетом формы нервных импульсов. Воспроизведение рефрактерности и формы

спайков, в свою очередь, весьма актуально при организации биоуправляемых

экспериментов, поскольку организация таких экспериментов предполагает

согласование входных и выходных параметров сопрягаемых естественных и

искусственных нейронов. Однако в случае моделирования информационных

процессов в сетях взаимосвязанных интернейронов, которые не должны

взаимодействовать с естественными нейронами, алгоритм (8), а также

реализующий его искусственный нейрон могут быть существенно упрощены.

Так, с целью упрощения модели (8) прежде всего, учтем тот

экспериментально установленный факт, что ни амплитуда нервных импульсов, ни

их форма не участвуют в кодировании информации, передаваемой от клетки к

клетке. Следовательно, без ущерба для информационной адекватности модели

(8) ее биологическому прототипу спайк Vвых(t) можно аппроксимировать не

функцией (5), а более простым прямоугольным импульсом e(t) единичной

амплитуды и длительности, равной tи. Очевидно, что при этом как сама

модель, так и ее технический аналог заметно упрощается.

Далее учтем и то, что единственным достоверно установленным на

сегодняшний день информативным параметром выходных спайков является

величина их межимпульсных интервалов, т. е. частота следования нервных

импульсов в функции от величины возбуждения нервной клетки.

Таким образом, в качестве выходных величин нервных клеток следует

рассматривать не сами спайки и, естественно, не аппроксимирующие их сигналы

прямоугольной формы e(t), а частоты их следования, которые в свою очередь

отражают степень возбуждения нейрона в каждый момент непрерывного времени

t. Более того, выходная функция Z(t) нейрона может быть представлена при

этом либо в виде частоты следования сигналов e(t), либо непосредственно в

виде аналоговых величин или цифровых кодов, отражающих степень возбуждения

нервной клетки. При таком подходе три последних уравнения математической

модели (8) можно заменить одним уравнением следующего типа:

Z(t) = max{0, k[P(t) - ?п]}, (9)

где Z(t) – частота, пропорциональная возбуждению P(t) - ?п нейрона либо

кодирующая ее аналоговая или цифровая величина; k – коэффициент

пропорциональности; max{0, k[P(t) - ?п]} – функция, выделяющая те интервалы

изменения P(t), на которых справедливо нестрогое равенство P(t)( ?п.

Очевидно, что если функция (9) является выходной, то для

взаимосвязанных и взаимодействующих нейронов значения Z(t) должны служить и

в качестве входных. Обозначая входные величины как xj(t), представим

алгоритм информационных процессов в нервной клетке в виде более простой,

чем (8), но эквивалентной ей математической модели:

где xj(t) – аналог интенсивности входных воздействий, поступающих на j-й

вход нейрона с синаптическим весом (j; V(t) – аналог потенциала,

характеризующего суммарное входное воздействие, получаемое в результате

пространственной суммации; P(t) – аналог мембранного потенциала нейрона; ?п

– аналог постоянного порогового потенциала нервной клетки; ( =1/(; (=(ki ;

ki – коэффициент пропорциональности при V(t); Zmax - максимально возможное

значение Z(t), определяемое абсолютной рефрактерностью моделируемой клетки.

Вводя в систему (10) обозначение возбудимости нейрона в виде функции

y(t) = P(t) – ?п, (11)

получим идеализированную математическую модель информационных процессов в

нервной клетке, которая имеет следующий вид:

где ( ( (?п; ((j(t) – синаптический вес, величина которого может изменяться

во времени под воздействием внешних факторов, например из-за аксо-аксонных

взаимодействий.

Как и в модели (8), первое уравнение системы (12) описывает процесс

пространственной суммации входных воздействий, но не в форме единичных

спайков, а в более общей форме величин, имеющих смысл мгновенных частот их

следования. Второе уравнение описывает закон изменения возбудимости нейрона

y(t), а третье – определяет процесс формирования выходных величин,

характеризующих текущее возбуждение нервной клетки.

Математическую модель (12) можно использовать для построения

нейроподобных элементов и цифровых нейропроцессоров.

3.Модели адаптивных процессов в нейроне

Адаптация, или приспособление к изменяющимся условиям внешней среды,

является одним из наиболее важных свойств всего живого. Это свойство

проявляется не только на уровне всего организма, но и на уровне отдельных

его подсистем, отдельных клеток и внутриклеточных образований. На этом

основании были разработаны модели нейронов, описывающие адаптивные реакции

нейрона. Суть таких реакций заключается в плавном понижении частоты

выходной импульсации в ответ на продолжительное стационарное внешнее

воздействие, имеющее вид ступенчатой функции. Переходная характеристика

адаптивной модели в этом случае соответствует кривой 1 на рисунке 1. Кривая

2 на том же рисунке обозначает реакцию на то же входное воздействие V(t)

неадаптивного нейрона.

Другим типом адаптивных реакций являются так называемые “on”, “off” и

“on–off” ответы нервных клеток. Они наиболее характерны для рецепторных

нейронов зрительного анализатора и возникают при световом раздражении

сетчатки глаза.

По виду переходные характеристики “on”, “off” ответов отличаются от

кривой 1 на рисунке 1 тем, что при возрастании времени t они довольно

быстро стремятся к нулю, а не к некоторой, отличной от нуля, постоянной

величине. Последнее обстоятельство приводит к выводу о возможности

воспроизведения адаптивных “on”, “off” ответов путем дифференцирования

реакций неадаптивного нейрона, а именно кривых типа 2 на рисунке 1.

Действительно, в этом случае выходные импульсные последовательности будут

появляться в моменты начала и окончания ступенчатого входного воздействия,

что и соответствует “on”, “off” ответам нейрона. Легко показать, что такой

простейший механизм адаптивного поведения можно воспроизвести при помощи

математической модели (12) практически без ее усложнения.

Рис. 1. Переходные характеристики.

Пусть суммарное входное воздействие V(t), поступающее на синаптические

входы нейрона, представляет собой ступенчатый сигнал h, определяемый

соотношением:

Тогда при ? = 0 и ( = 1 второе уравнение системы (12) примет вид

Решением уравнения (13) является функция

график которой совпадает с переходной характеристикой неадаптивной модели

нейрона. Именно по этой причине устройство, реализующее алгоритм (12),

может использоваться как искусственный неадаптивный нейрон.

Однако, если в качестве выходной величины неадаптивной модели нервной

клетки использовать не функцию Z(t), а абсолютные значения дифференциалов

dy(t), то выходная реакция такой модели на входное ступенчатое воздействие

будет описываться соотношением

Нетрудно видеть, что график функции (14) качественно не отличается от

переходной характеристики модели, реализующей “on” и “off” ответы

нейронов. Последнее обстоятельство позволяет утверждать, что для

моделирования простейших адаптивных реакций нервных клеток рецепторного

типа достаточно воспроизводить первые два уравнения модели (12), а выходы

организовать в соответствии с получаемым из (12) соотношением

где ( – неизменный во времени порог.

В то же время, по мнению нейрофизиологов, более сложные механизмы

адаптивного поведения нейронов основаны на изменении их пороговых свойств.

В соответствии с другими представлениями изменение порога клетки

происходит в зависимости от изменения входной активности нейрона. Модель,

воспроизводящую второй механизм, называют адаптивной по входу. Очевидно,

что могут иметь место динамические нейроподобные элементы, адаптивные как

по входу, так и по выходу одновременно. Строятся такие модели на основе

следующих рассуждений.

Для построения на основе алгоритма (10) математической модели

адаптивной обработки информации в нейроне будем исходить из того, что, по

мнению физиологов, механизм адаптивного поведения нервных клеток связан с

изменениями порога (. В связи с этим используем уравнение (6), но не для

формирования спайков как в модели (8), а для воспроизведения адаптивных

реакций нейрона. При этом будем полагать, что при адаптации по выходу

мембранный потенциал клетки сравнивается с переменным порогом ((t(, закон

изменения которого имеет вид

Используя уравнение (15) в алгоритме (10), получим нейроподобную

модель с адаптацией по выходу:

В случае адаптации по входу в правой части уравнения (15) вместо Z(t)

необходимо использовать функцию P(t). Поэтому нейроподобная модель с

адаптацией по входу несколько отличается от модели (16) и имеет следующий

вид:

Очевидно, что для модели с адаптацией как по входу, так и по выходу

будем иметь:

В системе уравнений (18) порог ((t) зависит как от входной величины

(2P(t), так и от выходной (1Z(t) активности нервной клетки. Причем полагая

(2 = 0, (1 ( 0, получим модель с адаптацией только по входу. Более того,

при (1 = (2 = (2 = 0 и ((t)–( = y(t) получим исходную неадаптивную модель

(10).

Иными словами, модель (18) более универсальна, чем неадаптивная модель

(10), и по этой причине может быть использована для построения

искусственных нейронов, воспроизводящих как адаптивные, так и неадаптивные

реакции. Однако структура искусственного нейрона при этом также

усложняется. Поэтому прежде чем решить вопрос о целесообразности подобного

усложнения, необходимо учесть мнение физиологов о том, что нервная клетка

является лишь структурной единицей мозга и в полной мере обладает далеко не

всеми свойствами биологических систем.

В частности, многие физиологи полагают, что адаптивные реакции типа

привыкания, как и многие другие функции нервной ткани, реализуются не

отдельными нейронами, а их совокупностями в процессе совместной

корпоративной деятельности. В связи с этим наряду с понятием нейрона, как

структурной единицы нервной системы, в современной нейрофизиологии

используется понятие о ее функциональной единице, в качестве которой

выступает не отдельный нейрон, а некоторая совокупность нервных клеток,

называемая нейронным ансамблем. В простейшем случае нейронный ансамбль

состоит из двух взаимосвязанных нейронов, один из которых выполняет

основные функции, а второй – вспомогательные (усиление, торможение,

модификация процессов в основном нейроне и т. д.).

При таком подходе систему уравнений (18) можно рассматривать как

модель информационных процессов не в отдельной клетке, а в гипотетическом

двухнейронном ансамбле, основной нейрон которого реализует алгоритм (10), а

вспомогательный воспроизводит процесс модификации порогового потенциала

основного нейрона в функции от его входной и выходной активности. Алгоритм

вспомогательного нейрона при этом может быть представлен в следующем виде:

где x1 = P(t) – пространственный потенциал дендритного дерева основного

нейрона, поступающий на вспомогательный нейрон при помощи дендритных

связей; x2 = Z(t) – выходная активность основного нейрона, заводимая на

вспомогательный нейрон при помощи аксосоматической связи; (п – порог покоя

вспомогательного нейрона, совпадающий с порогом покоя нейрона основного;

W(t) – соматический выход вспомогательного нейрона, поступающий на сому

основного нейрона через сомасоматический контакт.

С учетом алгоритма (19), модель информационных процессов в основном

нейроне принимает вид:

Таким образом, с целью воспроизведения адаптивных реакций вместо

усложнения структуры отдельного искусственного нейрона можно идти путем

создания адаптивных нейроподобных ансамблей, состоящих из устройств,

реализующих более простую неадаптивную модель (10), (12). Важная

особенность этой модели состоит в том, что на ее основе могут строиться не

только искусственные нейроны и нейроподобные ансамбли с адаптивными

реакциями типа “on”, “off” ответов и функцией привыкания, но и такие

субклеточные информационные процессы, как облегчение синаптической

передачи.

Суть облегчения заключается в том, что при увеличении интенсивности

входных воздействий на некоторый синапс происходит повышение его

интенсивности, т. е. повышается его способность к еще более интенсивной

передаче возбуждений на постсинаптическую мембрану. И, наоборот, при

уменьшении интенсивности входных воздействий (при уменьшении использования

синапса в некоторой нейрональной информационной цепи) его эффективность

падает. Модификацию синаптической передачи можно связать с такими

изменениями синаптических весов (j , при которых все величины (j

становятся прямо пропорциональными частотам следования соответствующих

входных импульсаций xj(t). Тогда интенсивность синаптической передачи будет

соответствовать идее облегчения, т. е. при увеличении интенсивности входных

воздействий соответствующие коэффициенты (j будут увеличиваться, а при ее

уменьшении – уменьшаться.

В качестве математической модели данного процесса можно использовать

уравнение, подобное (15), но записанное относительно переменного во времени

синаптического веса (j (t):

где (с – постоянная времени изменения синаптического веса; (п –

синаптический вес покоя (при отсутствии x(t)).

Если в уравнении (20) положить x(t) = h, где

то его решением будет служить функция

Из выражения (21) следует, что

т. е. для больших x синаптический вес больше, для меньших – меньше.

Иными словами модель (20) действительно может служить моделью такого

процесса, как облегчение синаптической передачи.

Резюмируя изложенное приходим к выводу, что модели учитывающие

пространственно-временную суммацию, т. е. модели типа (10), (12) являются

достаточно универсальными и могут быть положены в основу построения

различных нейроподобных элементов, ансамблей и сетей.

4.Формальные нейроны

Наиболее простой физически реализуемой информационной моделью нервной

клетки является формальный нейрон (ФН). В основе построения формальных

нейронов лежит представление о нервной клетке как о логическом элементе,

работающем по принципу «все или ничего». Предполагается, что между клетками

возможны аксо-дендритные синаптические взаимодействия. Входные и выходные

спайки аппроксимируются при этом единичными импульсами прямоугольной формы

e(t) или единичными потенциалами и считается, что выходная функция является

логической функцией от входных булевых переменных, а также от синаптических

весов (j(t)=(j и порога (п, принимающих целочисленные значения.

Обычно формальный нейрон определяется как пороговый логический элемент

со следующими основными свойствами:

1. Он имеет N синаптических входов, которые могут быть возбуждающими

((j>0) или тормозными ((j0 цифровой нейроподобный

элемент выполняет функции генератора величин Zi+1(t=kyi(t, т. е. выполняет

функции нейрона, а при (t=0 превращается в элемент памяти. В последнем

случае величина yi хранится в регистре ЦНЭ без изменения. Для ее считывания

необходимо положить k=1, (j=0, (=0, (=0 и подать (t=1, а для записи новой

информации на одном из входов r необходимо в течение одного шага

интегрирования иметь синаптический вес (r=1, а коэффициенты (j (j(r)

синаптических весов остальных входов – равными нулю, (=0, (=0, (t=1.

Следует отметить и еще одну особенность рассматриваемого алгоритма.

Ее суть состоит в том, что при 0(yi(1, (=0, (=1, (j({0, 1}, (t({0, 1},

k({0, 1}, xji({0, 1}, Zi+1({0,1} цифровой нейроподобный элемент,

реализующий алгоритм (27), в функциональном отношении превращается в схему,

выполняющую следующее логическое выражение:

Последнее обстоятельство интересно в том отношении, что открывает

принципиальную возможность построения нейроподобных сетей, состоящих из

цифровых динамических нейронов, позволяющих при некоторых условиях

выполнять чисто алгебраические соотношения, свойственные логическим

моделям.

Иными словами, разностный алгоритм (27) цифрового нейроподобного

элемента является довольно универсальным. Он может служить обобщением не

только динамических, но и формально-логических моделей. С учетом

возможности изменения параметров (, (j, (, k, а в общем случае и параметра

(:

этот алгоритм может быть представлен в следующем виде:

Причем приращения ((i, ((ji, ((i, (ki, ((i переменных параметров (i, (ji,

(i, ki, (i, как и входные приращения xj(i-1)(t могут формироваться либо на

выходах других ЦНЭ в виде последовательностей Zi+1(t, либо поступать извне

по каналам сенсорных систем.

Таким образом, цифровая модель нейрона, построенная на основе

цифровых интеграторов и сумматоров и воспроизводящая разностный алгоритм

(34 – 36) с переменными параметрами, обладает функциональной пластичностью

и может служить в качестве процессорного элемента, пригодного как для

использования в нейрокибернетических и нейрофизиологических исследованиях,

так и для использования в цифровых нейрокомпьютерных системах,

ориентированных на решение сложных задач вычислительной математики,

робототехники и искусственного интеллекта.

Важная особенность этих нейроэлементов состоит в том, что помимо

работы в режимах различных искусственных нейронов они способны структурно

выполнять ряд крупных математических операций, таких как определение

скалярного произведения двух векторов, численное интегрирование, выделение

положительных приращений интеграла.

Действительно, рассматривая алгоритм (34 – 36), нетрудно видеть, что

соотношение (34) представляет собой скалярное произведение двух векторов

Гi= [(1i, (2i,(,(Ni] и X=[x1i, x2i,(,xNi]T , умноженное на шаг (t.

Следовательно, если в ЦНЭ наряду с основным выходом положительных

приращений Zi+1(t предусмотреть дополнительный выход приращений Vi(t, то

появится возможность одновременного использования ЦНЭ как минимум в двух

режимах: в режиме определения приращений Vi(t и в режиме определения

положительных приращений интеграла Zi+1(t. Организуя еще один выход, а

именно выход приращений yi(t, получим дополнительный режим – режим

численного интегрирования без выделения положительных величин. При этом

следует подчеркнуть, что применение в схеме ЦНЭ дополнительных выходов не

только не исключает возможности его применения в рассмотренных ранее

режимах относительно основного выхода Zi+1(t, но и существенно расширяет

его функциональные возможности. Например, при (=(t=1 и при использовании в

ЦИ многоразрядных приращений, на основном выходе ЦНЭ формируется функция

(29), а в случае применения ЦИ с одноразрядными приращениями формируется

функция (30).

В то же время наличие первого дополнительного выхода обеспечивает

возможность одновременного использования того же ЦНЭ и в качестве блока,

реализующего вычисление скалярного произведения, т. к. на его первом

дополнительном выходе формируется сумма произведений:

а на втором дополнительном выходе формируется величины:

Таким образом, в отличие от формальных и аналоговых динамических

нейронов, в которых постулируется отсутствие всяких взаимодействий между

нервными клетками, кроме синаптических, в предлагаемых цифровых

нейроподобных элементах допускаются подпороговые (соматические)

взаимодействия, допускается возможность модификации синаптических весов ((

ji = (j(i-1) + ((ji) за счет дополнительных выходов yi(t, а также

возможность изменения других параметров нейроподобной модели в функции как

от основных, так и дополнительных выходных величин.

Указанные обстоятельства позволяют рассматривать предлагаемый ЦНЭ с

дополнительными выходами и входами приращений параметров в качестве

специализированного нейроподобного процессора, операционный базис которого

составляют операции разностного алгоритма (34 – 36). Наиболее важным при

этом является то, что данный базис выбран не произвольно, а получен в

результате математического описания информационных процессов в нервной

клетке и, следовательно, является объективно обусловленным для мозга.

Поэтому можно предположить, что нейросети цифровых нейрокомпьютеров,

составленные из нейроподобных процессоров будут отличаться пластичностью,

адаптивностью, самоорганизацией, устойчивостью, т. е. теми свойствами,

которые характерны для систем мозга. А если так, то построенные на базе ЦНЭ

нейрокомпьютеры могут быть использованы не только в нейрофизиологических и

нейрокибернетических экспериментах, но и в исследованиях, направленных на

разработку принципов построения различных распознающих, вычислительных и

управляющих систем нейроподобного типа. Именно по этой причине идея

использования алгоритма (34–36) в качестве операционного базиса

процессорных элементов цифровых нейрокомпьютеров является весьма

целесообразной. Цифровой нейроподобный элемент, реализующий алгоритм

(34–36) называют цифровым нейроподобным процессором (ЦНП), или цифровым

нейропроцессором.

11. Структура цифрового нейропроцессора

На основании разностного алгоритма (34–36) можно сделать вывод о том,

что с целью упрощения ЦНП его схему целесообразно строить на базе цифровых

интеграторов, реализующих формулу прямоугольников. Связано это с тем, что

при работе ЦНП в режиме ЦНЭ нет смысла применять более точные формулы

интегрирования, чем формула Эйлера, а возникающая при его работе в качестве

процессорного элемента нейрокомпьютеров погрешность может быть существенно

уменьшена, если отдельные ЦНП и нейрокомпьютер в целом использовать в

квазистационарном режиме. В целом структура ЦНП должна соответствовать блок-

схеме, приведенной на рисунке 14, где наряду с информационными входами и

входами приращений параметров предусмотрены как минимум три выхода, а

именно выходы приращений Vi(t, yi(t, Zi+1(t. Все эти выходы должны

содержать квантователи и допускать возможность их подсоединения как к

информационным, так и управляющим входам изменения параметров аналогичных

процессоров. В связи с тем, что каждый квантователь содержит определенное

оборудование и вносит некоторую погрешность в процесс функционирования ЦНП,

вопрос о количестве квантователей и о месте их включения в схеме6

процессора является весьма важным.

Рис.14. Структурная схема ЦНП

Учет процесса квантования приводит к более сложной, чем (34–36),

системе разностно-квантованных уравнений, которая в случае наиболее

простого квантования без сохранения остатков и при включении квантователей

на выходах ЦИ имеет следующий вид:

где Ф[(xi]=((xi - Oi) – функция квантования без сохранения остатков; Oi –

остаток квантования.

Для определения закона изменения погрешности квантования необходимо

из уравнения (38) вычесть соответствующее ему разностное уравнение (35) и

найти решение получающегося при этом уравнения погрешности. Решение такого

уравнения (i=yi–yi представляет собой функцию квантования ЦНП. При

построении уравнения погрешности следует учитывать то, что система (37–39),

построенная на основе разностных уравнений (34–36), не является единстве,

не является единственно возможной.

Так, при использовании более точного способа квантования с

сохранением остатков

([(xi + Oi-1] = (xi + Oi-1 + Oi

получим систему разносто-квантованных уравнений, отличную от (37–39):

Далее, учитывая то, что наряду с включением квантователей на выходах

ЦИ возможно их включение на входах (yq, (yr интеграторов, получим новые

системы разностно-квантованных уравнений. В частности, при квантовании без

сохранения остатков и включении квантователей на входах ЦИ будем иметь

а при квантовании с сохранением остатков и включении квантователей на

входах ЦИ получим:

Приведенные системы разностно-квантованных уравнений соответствуют

различным структурным схемам ЦНП. Если учесть, что каждую функцию

квантования реализует отдельный квантователь, причем квантователь без

сохранения остатков проще квантователя с сохранением остатков, то уже на

основании соотношений (37–39), (40), (41), (42) можно сравнить по сложности

воспроизводящие их ЦНП.

Из рассмотрения этих соотношений можно заключить, что структуры ЦНП с

квантователями без сохранения остатков наиболее просты, а из структур с

сохранением остатков наиболее проста та, в которой квантование

осуществляется после суммирования. Следовательно, с точки зрения экономии

оборудования наиболее предпочтительны ЦНП, содержащие квантователи без

регистров остатков. Однако различные структуры процессоров неравноценны в

отношении точности вычислений.

Анализ рассматриваемых разносто-квантованных уравнений, проведенный

при (i=(, (i =(, (i=(, (ji=(j, ki=k показывает, что погрешность квантования

ЦНП, квантователи которого осуществляют квантование без сохранения остатков

и включены на входах ЦИ, имеет вид

где |(i | – модуль погрешности квантования; (0 – значение погрешности (i

при i=0; n – число разрядов переменной yi.

В случае квантования без сохранения остатков и при включении

квантователей на выходах ЦИ погрешность ЦНП можно оценить соотношением

Если квантователи включены на входах ЦИ, а квантование осуществляется

с сохранением остатков, то погрешность ЦНП может быть оценена следующим

образом:

При квантовании с сохранением остатков и квантователях на выходах ЦИ

получим

В результате сравнения выражений (43), (44), (45), (46) можно

заключить, что погрешность квантования ЦНП, содержащих наиболее экономичные

квантователи без сохранения остатков, намного больше погрешности ЦНП,

использующих квантование с сохранением остатков. Действительно, как следует

из соотношений (43), (44), в них содержится произведение (((t)-1, которое

при 00.

В то же время, из соотношения (65) следует, что уравнение (64) может

быть устойчивым и при отрицательных (, если выполняется неравенство

т. е. даже в тех случаях, когда уравнения (48) и (67) принципиально

неустойчивы.

Таким образом, ЦНП без инерционностей обладает широкими динамическими

возможностями, что делает привлекательной идею построения процессоров,

реализующих уравнение (64). Однако практическое воспроизведение точной

экстраполяции связано с определенными техническими трудностями. Поэтому

будем полагать, что задержки блоков умножения на постоянный или медленно

меняющийся коэффициент при необходимости компенсируются экстраполяторами, а

выходные приращения полного интегратора, реализующего временной сумматор

ЦНП, в общем случае не экстраполируется. Подобная экстраполяция

целесообразна лишь в том случае, когда приводит к улучшению динамических

свойств, состоящих из ЦНП нейроноподобных ансамблей и структур.

Используя полученные результаты, перейдем к рассмотрению вопросов

создания элементной базы цифровых нейропроцессоров на основе

микроэлектронной технологии.

14. Алгоритм и структура базового модуля цифрового нейропроцессора

С целью практического использования рассматриваемых ЦНП целесообразно

их изготовление на основе современной микроэлектронной технологии в виде

больших интегральных схем (БИС). По этой причине уместна постановка задачи

о разработке БИС, предназначенных не только для построения ЦНП, но и

состоящих из них нейроподобных ансамблей и структур.

Следуя морфологии отдельного нейрона, для отдельного ЦНП желательно

иметь один корпус БИС. В то же время, учитывая то, что количество входных

дендритных отростков у нервных клеток колеблется от единиц до десятков и

сотен тысяч, в общем случае для БИС ЦНП необходимо предусматривать

специальную БИС расширителя пространственного сумматора. При таком подходе

номенклатура комплекта БИС ЦНП будет состоять из двух интегральных схем, а

именно схемы собственно ЦНП, имеющей несколько информационных входов, и

схемы входного расширителя, представляющего собой пространственный сумматор

нейропроцессора. Вопрос о количестве входов каждого из корпусов БИС должен

решаться исходя из возможностей конкретной микроэлектронной технологии.

Пример одного из возможных вариантов построения таких схем приведен

на рис.19 и на рис.20. Так, на рис.19 изображена структурная схема первого

корпуса, а на рис.20 – второго корпуса БИС ЦНП (БИС1 и БИС2

соответственно).

Однако необходимость в микросхемах двух типов ведет к определенным

неудобствам при создании микроэлектронных ЦНП. Поэтому представляет интерес

разработка алгоритма и структуры такого нейроподобного элемента, который

будучи реализован в виде БИС мог служить базовым модулем при построении как

временного, так и пространственного сумматоров, а значит, и нейропроцессора

в целом.

Для построения такого нейропроцессора используем подход, суть

которого состоит в том, что для выполнения функций временного сумматора

(БИС2) привлекается часть интеграторов, формирующих синаптические веса (ji

в БИС1. Данный подход позволяет на основе БИС1 синтезировать новую,

отличную от БИС1 и БИС2 микросхему нейронного модуля, работающего в режиме

простейшего нейрона и способного быть базовым элементом для синтеза более

сложных нейропроцессоров динамического типа, а также выполнять функции

расширителя входов пространственного сумматора ЦНП.

Действительно, как показывает анализ алгоритма (34–36), формирование

дискретной функции yi из ее приращений (yi не отличается от формирования

переменных синаптических весов (ji , параметров (i, (i, переменного порога

(i и коэффициента ki из соответствующих приращений ((ji, ((i, ((i, ((i, (

ki, а формирование приращений (yi осуществляется по той же формуле, что и

формирование пространственной суммы Vi(t. Следовательно, для сохранения

возможности воспроизведения динамических свойств нейрона в соответствии с

(34–36), в алгоритме базового нейронного модуля (БНМ) достаточно иметь лишь

одно условие вида

и одно соотношение вида

Остальные параметры ЦНП, а именно (i, (i, (i, ki , можно формировать

в цифровых интеграторах синаптических весов путем использования необходимых

схемных соединений и введения соответствующих обозначений.

Учитывая это обстоятельство, а также то, что в простейшем варианте

БНМ должен функционировать как минимум в режиме формального нейрона с

выходом Zi+1=Sign[Vi(t] и быть пригодным для создания более сложных

нейропроцессоров с динамическим выходом Zi+1(t=max{0, Vi(t}, представим

алгоритм БНМ в следующем виде:

Покажем, что относительно Z БНМ, работающий в соответствии с

алгоритмом (69), действительно реализует алгоритм формального нейрона. Для

этого введем обозначения:

Подставляя обозначения (70) в алгоритм (69), получим

При (ji=(j, ((ji =0i, (i =(, ((i =0,(t=1 и xji({0, 1} система

уравнений (71) принимает вид

что с точностью до обозначений совпадает с алгоритмом формального нейрона.

Полагая в некотором БНМ

найдем, что относительно выхода V(t тот же модуль будет воспроизводить

другую систему уравнений:

Работающий в соответствии с (72) БНМ назовем модулем пространственной

суммации.

Далее учтем, что произведения yi-1(t могут формироваться таким же

БНМ, если в алгоритме принять

и использовать выход Z(t.

Этот второй, запрограммированный в соответствии с (73) БНМ назовем

модулем временной суммации. Реализуемый им алгоритм имеет вид:

Если теперь использовать приращения Vi(t=(yi из алгоритма (72) модуля

пространственной суммации в качестве приращений ((1i=(yi для алгоритма (74)

модуля временной суммации, а также учесть, что в алгоритме (74) из

приращений (yi формируются величины yi , то на выходе Z(t БНМ временной

суммации получим выходные приращения динамического ЦНП, у которого (=k=1. В

дальнейшем с целью упрощения анализа будем полагать, что если не сделаны

специальные оговорки, то равенство (=k=1 выполняется автоматически.

Таким образом, отдельный БНМ действительно может работать в режиме

формального нейрона, пространственного и временного сумматора. Структурная

схема такого БНМ показана на рис. 21. Из рисунка видно, что в общем случае

модуль содержит N синаптических блоков, каждый из которых состоит из

умножителя Мнj , регистра Рг (j синаптического веса ( j и двухвходового

сумматора Смj, суммирующего значения весовых коэффициентов (ji с их

приращениями ((ji. На первые входы умножителей Мн j поступают входные

воздействия xj(i-1)(t с выходов других БНМ или от периферийного

оборудования, связанного с внешней средой. Произведения (ji(xj(i-1)(t)

суммируются многовходовым пространственным сумматором См(N+1) и в виде

результирующей величины Vi(t поступают на выход модуля, а также на вход

квантователя Кв.

Следует отметить, что при n–разрядных синаптических весах (ji и

n–разрядных входных воздействиях xj(i-1)(t произведения (ji(xj(i-1)(t) и

их сумма Vi(t будут содержать 2n двоичных разрядов. Очевидно, что с выхода

БНМ эти 2n–разрядные величины могут подаваться лишь на дополнительные входы

rj расширения многовходового сумматора См(N+1) в качестве слагаемых и не

могут использоваться ни в качестве приращений ((ji , ни в качестве

сомножителей (xj(i-1)(t) на входах Мнj. Поэтому для согласования

разрядностей величин Vi(t с разрядностью приращений ((ji и

разрядностью входных воздействий xj(i-1)(t используется квантователь Кв,

реализующий зависимость

где Vi(t – квантованные значения Vi(t, содержащее n ее старших разрядов;

Oi – остаток квантования, содержащий nмладших разрядов той же суммы Vi(t.

Для уменьшения погрешности квантования величин Vi(t остатки Oi при

квантовании по алгоритму (75) не отбрасываются, а учитываются в

соответствии с алгоритмом

где Oi-1 – остаток квантования суммы Vi-1(t в предыдущий (i-1)–й момент

времени ti.

Учитывая последнее соотношение, а также то, что выходной блок (ВБ)

модуля формирует значения выходной функции Zi(t, переформулируем алгоритм

(69) БНМ следующим образом:

где (ij - n-разрядное значение синаптического веса j-го входа БНМ в i-й

момент дискретного времени t; ((ji – n-разрядное приращение синаптического

веса j-го входа; Vi(t – 2n-разрядная неквантованная сумма на выходе

сумматора См(N+1); xj(i-1)(t – n-разрядные приращения входных воздействий;

(ji – величины, поступающие на входы rj сумматора См(N+1) с выходов Vi(t

других нейроподобных модулей; Vi(t – n-разрядные квантованные значения

величин Vi(t.

Выходные функции алгоритма (77) формируются выходным блоком ВБ

модуля. Этот блок сравнительно прост, и по количеству используемого

оборудования (совместно с оборудованием квантователя Кв, работающего по

алгоритму (76)) примерно соответствует оборудованию ОБСБ синаптического

блока. Иначе говоря, можно считать, что объем оборудования ОББНМ

нейроподобного модуля может быть оценен соотношением

Условное графическое обозначение БНМ показано на рис. 22. Используя

данное обозначение, представим схему цифрового нейроподобного процессора

так, как это показано на рис. 23. Информационные процессы, протекающие в

данной схеме, могут быть описаны следующей системой разностных уравнений:

где ( – порог моделируемого воздействия; ( – параметр, характеризующий

инерционные свойства нервной клетки.

Сравнивая уравнения системы (79) с математическим описанием

информационных процессов в цифровой модели нейрона, найдем, что

относительно выходной функции Zi+1(t система (79) действительно совпадает с

алгоритмом нейропроцессора динамического типа. Относительно выходной

функции Zi+1 отдельный БНМ работает в режиме обычного формального нейрона.

Таким образом, БНМ представляет собой достаточно универсальный

модуль, который способен работать в режимах пространственного сумматора и

формального нейрона, а также в режиме временного сумматора. Более того, тот

же модуль может служить и в качестве расширителя входов пространственного

сумматора. Поэтому при его микроэлектронной реализации получается

единственная универсальная БИС БНМ, выполняющая функции как БИС1, так и

БИС2.

Очевидно, что в такой БИС желательно иметь как можно больше

синаптических входов, т. е. тех входов, на реализацию которых уходит

основная часть оборудования БНМ. Однако, при проектировании БНМ необходимо

учитывать и то, что в различных режимах оборудование модуля используется

неравномерно. Так, из рис. 23 видно, что в БНМ1, выполняющем функции

пространственного сумматора, используется практически все оборудование

схемы. В то же время в БНМ2, реализующем функции временного сумматора,

используется лишь 2(N+1)-1–я его часть. При возрастании N эффективность

применения модуля БНМ2 уменьшается.

С целью устранения данного недостатка описанных базовых нейронных

модулей используем идею коммутации их синаптических блоков. При этом

появляются модули с внутренней коммутацией.

15. Базовый модуль с внутренней коммутацией

Идею построения коммутируемых БНМ (КБНМ) поясним при помощи схемы,

показанной на рис. 24а (на рис. 24б показано ее условное графическое

обозначение).

Входы ?j (j=1, N+2) являются управляющими. Причем, ?j ({0, 1}. Если

некоторый сигнал ?j =0, то соответствующий j-й синаптический блок

отключается от сумматора и при помощи дополнительного выхода (j может быть

подсоединен к некоторому входу расширения rj другого БНМ.

Эффективность использования оборудования ЦНП, состоящего из двух

коммутируемых БНМ, возрастает почти в два раза.

Следующий этап совершенствования структуры БНМ связан с обеспечением

возможности построения ЦНП не на двух, а на одном нейроподобном модуле.

Достигается это путем обеспечения возможности переключения режимов работы

модуля.

16. Базовый модуль с перестраиваемой структурой

Блок-схема базового модуля с перестраиваемой структурой (БНМ ПС)

имеет вид, показанный на рис. 25а (условное графическое обозначение

приведено на рис. 25б).

При использовании БИС БНМ ПС схема ЦНП может быть построена на одной

микросхеме путем коммутации ее входов и выходов (рис. 26).

Полюсы r1( rM позволяют увеличивать число входов ЦНП до нужного

числа. В качестве расширителей входов используются такие же БИС. (Выходы (,

(’, (1((N+2). При (=1 и отсутствии обратных связей БНМ ПС является

обучаемым формальным нейроном или расширителем входов ЦНП. С показанными на

рис. 26 обратными связями та же БИС выполняет функции ЦНП.

Подключение такой же БИС на входы расширения позволяют увеличить

число входов ЦНП.

Таким образом, рассмотренный базовый модуль является

полифункциональным и, кроме того, позволяет повышать эффективность

использования своего оборудования путем переключения синаптических блоков.

Достигается это путем незначительных аппаратных затрат внутри модуля и

использования дополнительных управляющих, входных и выходных линий.

17. Расчет экономического эффекта

Расчет экономического эффекта от производства новой продукции, не

имеющей базы сравнения (принципиально новой продукции), осуществляется

исходя из прибыли реализации единицы этой продукции, удельных капитальных

вложений с учетом нормативного коэффициента их эффективности и годового

объема производства принципиально новой продукции:

Э = ( П – Ен*К)*А2 (80)

где Э – годовой экономический эффект от производства нового продукта, руб.;

П – прибыль от реализации единицы нового продукта, руб.; Ен – нормативный

коэффициент эффективности капитальных вложений, равный 1,5; К – удельные

капитальные вложения в производство нового продукта, руб.; А2 – годовой

объем производства новых продуктов, ед.

Для выбора наиболее экономичного варианта производства производятся

расчеты сравнительной экономической эффективности на основе определения

минимума приведенных задач:

Зi = Сi + Ен*Кi ( min (81)

где Зi – удельные (на единицу продукции) приведенные затраты на

производство продукта, руб.; Сi – удельные текущие затраты (себестоимость)

на производство продукта, руб.; Кi – удельные капитальные вложения в

продукт, руб.

Расчеты по формуле (81) позволяют из всего множества вариантов

выпуска одинаковых по объему и качеству продуктов при различных текущих

затратах и капитальных вложений выбрать вариант с наименьшими совокупными

затратами.

Решение о выборе варианта для постановки его на производство

формируется на основе анализа экономической эффективности и

народнохозяйственного значения продукта при его использовании с учетом

расчетов, выполненных по формуле (81).

Заключение

Изложенный материал отражает один из важных подходов к проектированию

искусственных нейронов и нейронных сетей. Суть этого подхода состоит в

синтезе и аппаратной реализации разностных алгоритмов обработки информации

в нервных клетках, воспроизводящих как моделирующие, так и вычислительные

свойства нейронов. Данное обстоятельство оправдывает использование для

обозначения синтезированного цифрового динамического нейроподобного

элемента термина «цифровой нейропроцессор». Особенность такого ЦНП

заключается в том, что, помимо выполнения крупных математических операций,

он структурно настраивается на выполнение крупных моделирующих операторов

типа формального нейрона, адаптивного нейрона и т. д.

Нейронные операторы позволяют использовать ЦНП для имитационного

моделирования неформализованных нейросетевых процессов в мозге.

Математические операции позволяют создавать обучаемые сети систем

распознавания образов. Более того, эти операции позволяют строить

нейропроцессорные сети для решения таких задач вычислительной математики,

как решение систем линейных алгебраических уравнений с произвольной, в том

числе прямоугольной и квадратной особенной матрицей коэффициентов; решение

задач линейного программирования; решение систем дифференциальных уравнений

со сложными граничными условиями, решение интегральных уравнений и т. п.

В то же время следует отметить, что данный подход не является

единственным. В настоящее время многие фирмы США, Японии, Европы ведут

интенсивные исследования, направленные на создание нейрокомпьютеров и

нейроэлементов различных модификаций. Прежде всего это касается

симуляционных (моделирующих) нейрокомпьютеров, разрабатываемых в виде

пакетов прикладных программ для персональных ЭВМ и суперЭВМ.

Разрабатываются нейроЭВМ на новой технологической основе, например

оптической, оптоэлектронной, молекулярной.

Литература

1. Чернухин Ю. В. Нейропроцессоры. Таганрог, ТРТИ, 1994.

2. Чернухин Ю. В. Искусственный интеллект и нейрокомпьютеры.

Таганрог, ТРТИ, 1997.

-----------------------

(1)

[pic]

(2)

[pic]

[pic]

(3)

[pic]

(4)

[pic]

[pic]

(5)

[pic]

[pic]

(6)

(8)

[pic]

[pic]

[pic]

(10)

[pic]

(12)

1

2

V(t)

Z(t),V(t)

(13)

[pic]

[pic]

[pic]

[pic]

(14)

[pic]

[pic]

(15)

[pic]

(16)

(17)

[pic]

(18)

[pic]

(19)

[pic]

[pic]

(20)

[pic]

[pic]

(21)

[pic]

[pic]

(22)

(23)

[pic]

[pic]

(26)

[pic]

(25)

[pic]

[pic]

[pic]

x(ti)

xN(ti)

(1

.

. ПС

.

(N

–1

Sign ky(ti)

Z(ti+1)

y(ti)

(n

k

(1

.

. ПС1

.

(N

.

.

.

(

(( ПС2

–(

x(ti)

.

.

.

xN(ti)

(п

И

k ВБ

Z(t)

y’(t)

y(t0)

V(t)

(1

.

. ПС

.

(N

–1

–(

.

.

.

x(ti)

.

.

.

xN(ti)

(п

И

ВБ

Z(t)

y(t0)

y’(t)

y(t)

Пвв1

Пвв2

ПввN

ПЗУ

Программа алгоритма

ОЗУ

(1 (

. (

. k

.

(N (

Пв

МПУ

Z(ti+1)

x1(ti)

x2(ti)

xN(ti)

[pic]

[pic]

[pic]

(Wi+1

(m)

( yq(i+1)

(m)

См

Мн

Кв

Рг yi-1

(n)

yi=yi-1+( yi

(Wi

(n+m)

( yi

(m)

ЦИ

См

&1

&2

Рг Oi

(n)

(Wi+Oi-1

(Wi+1

(m)

Кв1

(Wi

(n+m)

Ио Ип

&

Кв2

(Wi+1

Ип

(Wi

ЦИ

yi-1

(Wi+1

(yq(i+1)

(yi

ЦИ

yi-1

(Wi+1

(yq(i+1)

(yi

Кв

(Wi+1

(Wi+1

ЦИ

yi-1

(Wi+1

(yq(i+1)

(yi

(yi

(yq(i+1)

Э

(yqi

(yq(i+1)= (y эqi

[pic]

[pic]

ЦИ

(1

ЦИ

(N

См1

...

Vi(t

ЦИ

(

(Vi(t

См1

См2

-((t

ЦИ

yi-1

(yi

ЦИ

k

(

Zi+1(t

-(yi(t

(

ЦИ

-

(

(

ЦИ

-

yi(t

X1(t

XN(t

(t

ЦИ

(1

ЦИ

(N

...

См

ЦИ

yi-1

(

ЦИ

-

(

X1(t

ЦИ

k

(

Zi+1(t

(

ЦИ

-

XN(t

(t

t

t

t

t

Vi

yi

Zi+1(t (k=1)

Zi+1(t (k=0.5)

[pic]

(27)

[pic]

(30)

(29)

(28)

[pic]

[pic]

[pic]

(31)

[pic]

[pic]

[pic]

(32)

[pic]

(34)

(36)

(35)

(33)

[pic]

[pic]

[pic]

[pic]

[pic]

(34)

(35)

(36)

[pic]

(37)

(38)

(39)

Пространственный сумматор

[pic]

Временной

сумматор

[pic]

Пространственный сумматор

[pic]

Vi(t

yi(t

. . .

((1 ((N

(t (( (( (( (k

Zi+1(t

X1(i-1)(t

XN(i-1)(t

.

.

.

[pic]

(40)

[pic]

(41)

[pic]

(42)

[pic]

[pic]

(43)

(44)

[pic]

(45)

[pic]

(46)

ЦИ1

(1

ЦИN

(N

См1

Кв

Кв

Кв

ЦИ(N+1)

(

(x1

(xN

.

.

.

.

.

.

См2

ЦИ(N+2)

y

Кв

Кв

ЦИ(N+5)

+

k

ЦИ(N+3)

-(

(Z

ЦИ(N+4)

-(

Кв

(t

Рис.15.ЦНП с ЦИ с квантователями на входах

Рис.16.ЦНП с ЦИ с квантователями на входах с переменными значениями

параметров

(t

Кв

ЦИ(N+4)

-(

(Z

ЦИ(N+3)

-(

ЦИ(N+5)

+

k

(k

Кв

ЦИ(N+2)

y

См2

.

.

.

.

.

.

(x1

ЦИ(N+1)

(

((N

Кв

Кв

См1

ЦИN

(N

ЦИ1

(1

Кв

((1

Кв

((

(x1

Кв

(xN

Кв

(xN

Кв

Кв

Кв

-((

Кв

-((

Рис.17.ЦНП с ЦИ с квантователями на выходах

(t

Кв

ЦИ(N+4)

-(

(Z

ЦИ(N+3)

-(

ЦИ(N+5)

k

Кв

Кв

ЦИ(N+2)

y

См2

.

.

.

.

.

.

(x1

ЦИ(N+1)

(

((N

Кв

Кв

См1

(xN

ЦИ1

(1

((1

Кв

ЦИN

(N

((

-((

Кв

(k

-((

Рис.18.ЦНП, промежуточный вариант

(t

((1 ((N -(( -((

(( (k

ЦИ(N+4)

-(

(t

ЦИ(N+3)

-(

ЦИ(N+2)

y

y(t

Кв

ЦИ(N+5)

k

См2

.

.

.

.

.

.

(x1

ЦИ(N+1)

(

(xN

Vi(t

Кв

См1

ЦИN

(N

ЦИ1

(1

(

[pic]

(47)

[pic]

(48)

(49)

[pic]

(50)

[pic]

[pic]

(51)

[pic]

(52)

[pic]

(53)

[pic]

(54)

[pic]

(55)

[pic]

(56)

[pic]

(57)

[pic]

(58)

[pic]

(59)

[pic]

(60)

[pic]

(61)

[pic]

(62)

[pic]

(63)

[pic]

[pic]

(64)

[pic]

(65)

[pic]

(66)

[pic]

(67)

[pic]

(68)

ЦИ1

(1

ЦИN

(N

.

.

.

См

Кв

x1(t

.

.

.

xN(t

r1

rN

V(t

V(t

((1 ( ((N

БИС1

Рис. 19. БИС1, структурная схема

Рис. 20. БИС2, структурная схема

ЦИ5

k

(( -((

-(( (k

(y

(y

(t

V(t

r

Кв

См

ЦИ4

y

ЦИ2

–(

ЦИ1

(

.

.

.

ЦИ3

–(

(z

БИС2

[pic]

[pic]

[pic]

(69)

[pic]

(70)

[pic]

(71)

[pic]

[pic]

[pic]

(72)

[pic]

(73)

[pic]

(74)

(75)

[pic]

[pic]

(76)

[pic]

(77)

[pic]

(79)

Рг (1

См1

Мн1

См(N+1)

?

?

?

Мнj

Рг (j

Смj

.

.

.

.

.

.

МнN

Рг (N

СмN

.

.

.

(?1

x1(t

(?j

xj(t

(?N

xN(t

r1

rN

?

V

ВБ F1

F2

Кв

БН

V(t

V(t

Z(t

Sign Z

Рис. 21. Базовый нейропроцессорный модуль, структурная схема

[pic]

(78)

?

V

F1

F2

БНМ

?

?

?

?1

?

?N

(?1

?

(?N

r1

?

rm

Рис. 22. Базовый нейропроцессорный модуль, условное обозначение

?

?

(t

x1(t

x(N-2)(t

-(?

-((

?i

?M

V2j(t

V1j(t

g

рV

f

gF1

g

dF2

ББНМ

2

?1=?( i-1)

?

?N

(?1

?

(?N

r1

?

rm

V

БНМ

1

?1

?

?N-2

?N-1=-?

?N =-(

(?1

(?N-2

(?N-1

(?N

r1

?

rM

Рис. 23. Цифровой нейроподобный процессор

Рис. 24а. Коммутируемый БНМ

г1

гМ

( (1 ( (N + 2

(1 (N + 2

(1

(N+2

Vi(t

Vi(t

Zi(t

Sign Vi(t

КБНМ

?

? ?

(

V

ВБ

Z

S

См

(N+2

(N+2

(1

(1

(1

?

(N+2 (

((1 V

?

((N+2 Z

r1 S

?

rM

(1 (1

? ?

(N+2 (N+2

? ?

БИС

КБНМ

Рис. 24б. КБНМ, условное обозначение

БНМ ПС

(t

(t

(t

((1

(’

ВБ2

V’

Рг А

?

(N+3

?

См2

Рис. 25а. БНМ с перестраиваемой структурой

г1

гМ

( (2 ( (N + 3

(

(2

(N+3

?

(

V

ВБ1

Z

S

См1

К

(2

(

(1

Рис. 25б. БНМ ПС, условное обозначение

БИС

КБНМ

ПС

(1 (’

((1 V’

(2

?

(N+3

((2

?

((N+3

r1

?

rM

(

А (N+2

? ?

(1

?

(N+2

(

V

Z

S

(

V

Z

S

(1

?

(N+2

Рис. 26. БНМ ПС, выполняющий функции ЦНП

БИС

КБНМ

ПС

(1=y i-1 (’

((1 V’

(2=-(

(3=-(

(4

?

(N+3

((2

((3

?

((N+3

r1

?

rM

(

А

(t

x1(t

xN-2(t

–((

–((

“0”

© 2010