Приборы радиационной и химической разведкиПриборы радиационной и химической разведкиДозиметрические приборы Принцип обнаружения ионизирующих (радиоактивных) излучений (нейтронов, гамма-лучей, бета- и альфа-частиц) основан на способности этих излучений ионизировать вещество среды, в которой они распространяются. Ионизация, в свою очередь, является причиной физических и химических изменений в веществе, которые могут быть обнаружены и измерены. К таким" изменениям среды относятся: изменения электропроводности веществ (газов, жидкостей, твердых материалов); люминесценция (свечение) некоторых веществ; засвечивание фотопленок; изменение цвета, окраски, прозрачности, сопротивления электрическому току некоторых химических растворов и др. Для обнаружения и измерения ионизирующих излучений используют следующие методы: фотографический, сцинтилляционный, химический и ионизационный. Фотографический метод основан на степени почернения фотоэмульсии. Под воздействием ионизирующих излучений молекулы бромистого серебра, содержащегося в фотоэмульсии, распадаются на серебро и бром. При этом образуются мельчайшие кристаллики серебра, которые и вызывают почернение фотопленки при ее проявлении. Плотность почернения пропорциональна поглощенной энергии излучения. Сравнивая плотность почернения с эталоном, определяют дозу излучения (экспозиционную или поглощенную), полученную пленкой. На этом принципе основаны индивидуальные фотодозиметры. Сциптилляционный метод. Некоторые вещества (сернистый цинк, йодистый натрий) под воздействием ионизирующих излучений светятся. Количество вспышек пропорционально мощности дозы излучения и регистрируется с помощью специальных приборов — фотоэлектронных умножителей. Химический метод. Некоторые химические вещества под воздействием ионизирующих излучений меняют свою структуру. Так, хлороформ в воде при облучении разлагается с образованием соляной кислоты, которая дает цветную реакцию с красителем, добавленным к хлороформу. Двухвалентное железо в кислой среде окисляется в трехвалентное под воздействием свободных радикалов НО2 и ОН, образующихся в воде при ее облучении. Трехвалентное железо с красителем дает цветную реакцию. По плотности окраски судят о дозе излучения (поглощенной энергии). На этом принципе основаны химические дозиметры ДП-70 и ДП-70М. В современных дозиметрических приборах широкое распространение получил ионизационный метод обнаружения и измерения ионизирующих излучений. Ионизационный метод. Под воздействием излучений в изолированном объеме происходит ионизация газа:, электрически нейтральные атомы (молекулы) газа разделяются на положительные и отрицательные ионы. Если в этот объем поместить два электрода, к которым приложено постоянное напряжение, то между электродами создается электрическое поле. При наличии электрического поля в ионизированном газе возникает направленное движение заряженных частиц, т.е. через газ проходит электрический ток, называемый ионизационным. Измеряя ионизационный ток, можно судить об интенсивности ионизирующих излучений. Приборы, работающие на основе ионизационного метода, имеют принципиально одинаковое устройство и включают: воспринимающее устройство (ионизационную камеру или газоразрядный счетчик),усилитель ионизационного тока, регистрирующее устройство(микроамперметр) и источник питания. Ионизационная камера представляет собой заполненный воздухом замкнутый объем, внутри которого находятся два изолированных друг от друга электрода (типа конденсатора). К электродам камеры приложено напряжение от источника постоянного тока. При отсутствии ионизирующего излучения в цепи ионизационной камеры тока не будет, поскольку воздух является изолятором. При воздействии же излучений в ионизационной камере молекулы воздуха ионизируются. В электрическом поле положительно заряженные частицы перемещаются к катоду, а отрицательные — к аноду. В цепи камеры возникает ионизационный ток, который регистрируется микроамперметром. Числовое значение ионизационного тока пропорционально мощности излучения. Следовательно, по ионизационному току можно судить о мощности дозы излучений, воздействующих на камеру. Ионизационная камера работает в области насыщения. Газоразрядный счетчик используется для измерения радиоактивных излучений малой интенсивности. Высокая чувствительность счетчика позволяет измерять интенсивность излучения в десятки тысяч раз меньше той, которую удается измерить ионизационной камерой. Газоразрядный счетчик представляет собой герметичный полый металлический или стеклянный цилиндр, заполненный разреженной смесью инертных газов (аргон, неон) с некоторыми добавками, улучшающими работу счетчика (пары спирта). Внутри цилиндра, вдоль его оси, натянута тонкая металлическая нить (анод), изолированная от цилиндра. Катодом служит металлический корпус или тонкий слой металла, нанесенный на внутреннюю поверхность стеклянного корпуса счетчика. К металлической нити и токопроводящему слою (катоду) подают напряжение электрического тока. В газоразрядных счетчиках используют принцип усиления газового разряда. В отсутствие радиоактивного излучения свободных ионов в объеме счетчика нет. Следовательно, в цепи счетчика электрического тока также нет. При воздействии радиоактивных излучений в рабочем объеме счетчика образуются заряженные частицы. Электроны, двигаясь в электрическом поле к аноду счетчика, площадь которого значительно меньше площади катода, приобретают кинетическую энергию, достаточную для дополнительной ионизации атомов газовой среды. Выбитые при этом электроны также производят ионизацию. Таким образом, одна частица радиоактивного излучения, попавшая в объем смеси газового счетчика, вызывает образование лавины свободных электронов. На нити счетчика собирается большое количество электронов. В результате этого положительный потенциал резко уменьшается и возникает электрический импульс. Регистрируя количество импульсов тока, возникающих в единицу времени, можно судить, об интенсивности радиоактивных излучений. Дозиметрические приборы предназначаются для: контроля облучения — получения данных о поглощенных или экспозиционных дозах излучения людьми и сельскохозяйственными животными; контроля радиоактивного заражения радиоактивными веществами людей, сельскохозяйственных животных, а также техники, транспорта, оборудования, средств индивидуальной защиты, одежды, продовольствия, воды, фуража и других объектов; радиационной разведки — определения уровня радиации на местности Кроме того, с помощью дозиметрических приборов может быть определена наведенная радиоактивность в облученных нейтронными потоками различных технических средствах, предметах и грунте. Для радиационной разведки и дозиметрического контроля на объекте используют дозиметры и измерители мощности экспозиционной дозы. Комплекты индивидуальных дозиметров ДП-22В и ДП-24, имеющих дозиметры карманные прямо показывающие ДКП-50А, предназначенные для контроля экспозиционных доз гамма облучения, получаемых людьми при работе на зараженной радиоактивными веществами местности или при работе с открытыми и закрытыми источниками ионизирующих излучений. Комплект дозиметров ДП-22В (рис.) состоит из зарядного устройства типа ЗД- 5 и 50 индивидуальных дозиметров карманных прямо показывающих типа ДКП- 50А. В отличие от ДП-22В комплект дозиметров ДП-24 пять дозиметров ДКП- 50А. Зарядное устройство предназначено для зарядки дозиметров ДКП-50А. В корпусе ЗД-5 размещены: преобразователь напряжения, выпрямитель высокого напряжения, потенциометр-регулятор напряжения; лампочка для подсвета зарядного гнезда, микро выключатель и элементы питания. На верхней панели устройства находятся: ручка потенциометра , зарядное гнездо с колпачком и крышка отсека питания . Питание осуществляется от двух сухих элементов типа 1,6-ПМЦ-У-8, обеспечивающих непрерывную работу прибора не менее 30 ч при токе потребления 200 мА. Напряжение на выходе зарядного устройства плавно регулируется в пределах от 180 до 250 В. Дозиметр карманный прямо показывающий ДКП-50А предназначен для измерения экспозиционных доз гамма-излучения. Конструктивно он выполнен в форме авторучки . Дозиметр состоит из дюралевого корпуса , в котором расположены ионизационная камера с конденсатором, электроскоп, отсчетное устройство и зарядная часть. Основная часть дозиметра—малогабаритная ионизационная камера , к которой подключен конденсатор с электроскопом. Внешним электродом системы камера — конденсатор является дюралевый цилиндрический корпус , внутренним электродом — алюминиевый стержень . Электроскоп образует изогнутая часть внутреннего электрода (держатель) и приклеенная к нему платинированная визирная нить (подвижной элемент) . В передней части корпуса расположено отсчетное устройство- микроскоп с 90- кратнмм увеличением, состоящий из окуляра и шкалы . Шкала имеет 25 делений .Цена одного деления соответствует двум рентгенам. Шкалу и окуляр крепят фасонной гайкой. В задней части корпуса находится зарядная часть, состоящая из диафрагмы с подвижным контактным штырем . При нажатии штырь замыкается с внутренним электродом ионизационной камеры. При снятии нагрузки контактный штырь диафрагмой возвращается в исходное положение. Зарядную часть дозиметра предохраняет от загрязнения защитная оправа . Дозиметр крепится к карману одежды с помощью держателя . Принцип действия дозиметра подобен действию простейшего электроскопа. В процессе зарядки дозиметра визирная нить электроскопа отклоняется от внутреннего электрода под влиянием сил электростатического отталкивания. Отклонение нити зависят от приложенного напряжения, которое при зарядке регулируют и подбирают так, чтобы изображение визирной нити совместилось с отсчетного устройства. При воздействии гамма-излучения на заряженный дозиметр в рабочем объеме камеры возникает ионизационный ток. Ионизационный ток уменьшает первоначальный заряд конденсатора и: камеры» а следовательно, и потенциал внутреннего электрода. Изменение потенциала, измеряемого электроскопом,пропорционально экспозиционной дозе гамма-излучения. Изменение потенциала внутреннего электрода приводит к уменьшению сил электростатического отталкивания между визирной нитью и держателем электроскопа .В результате визирная нить сближается с держателем, а изображение ее перемещается по шкале отсчетного устройства. Держа дозиметр против света и наблюдая через окуляр за нитью, можно в любой момент произвести отсчет полученной экспозиционной дозы излучения. Дозиметр ДКП-50А обеспечивает измерение индивидуальных экспозиционных доз гамма-излучения в диапазоне от 2 до 50 Р при мощности экспозиционной дозы излучения от 0,5 до 200 Р/ч. Саморазряд дозиметра в нормальных условиях не превышает двух делений за сутки. Зарядка дозиметра ДКП-50А производится перед выходом на работу в район радиоактивного заражения (действия гамма-излучения) в следующем порядке: отвинтить защитную оправу дозиметра (пробку со стеклом) и защитный колпачок зарядного гнезда ЗД-5; ручку потенциометра зарядного устройства повернуть влево до отказа; дозиметр вставить в зарядное гнездо зарядного устройства, при этом включается подсветка зарядного гнезда и высокое напряжение; наблюдая в окуляр, слегка нажать на дозиметр и, поворачивая ручку потенциометра вправо, установить нить на «О» шкалы, после чего вынуть дозиметр из зарядного гнезда; проверить положение нити на свет: ее изображение должно быть на отметке "0", завернуть защитную оправу дозиметра и колпачок зарядного гнезда. Экспозиционную дозу излучения определяют по поло-нити на отсчетного устройства. Отчет необходимо производить при вертикальном положении нити, чтобы исключить влияние на показание дозиметра прогиба нити от веса. Комплект ИД-1 для поглощенных доз гамма нейтронного излучения. Он состоит из индивидуальных дозиметров ИД-1 и зарядного устройства ЗД-6. Принцип работы дозиметра ИД-1 аналогичен принципу работы дозиметров для измерения экспозиционных доз гамма-, излучения (например, ДКП-50А). Измерители мощности дозы ДП-5А (Б) и ДП-5В предназначены для измерения уровней радиации на местности и радиоактивной зараженности различных предметов по гамма-излучению. Мощность гамма-излучения определяется в миллирентгенах или рентгенах в час для той точки пространства, в которой помещен при измерениях соответствующий счетчик прибора. Кроме того, имеется возможность обнаружения бета излучения. Диапазон измерений по гамма-излучению от 0,05 мР/ч до 200 Р/ч в диапазоне энергий гамма квантов от 0,084 до 1,25 Мэв. Приборы ДП-5А, ДП-5Б и ДП-5В имеют шесть поддиапазонов измерений . Отсчет показаний приборов производится по нижней шкале микроамперметра в Р/ч, по верхней шкале — в мР/ч с последующим умножением на соответствующий коэффициент поддиапазона. Участки шкалы от нуля до первой значащей цифры являются нерабочими. Приборы имеют звуковую индикацию на всех поддиапазонах, кроме первого. Звуковая индикация прослушивается с помощью головных телефонов . Питание приборов осуществляется от трех сухих элементов типа КБ-1 (один из них для подсвета шкалы), которые обеспечивают непрерывность работы в нормальных условиях не менее 40 ч — ДП-5А и 55 ч — ДП-5В. Приборы могут подключаться к внешним источникам постоянного тока напряжением 3,6 и 12В — ДП-5А и 12 или 24В — ДП-5В, имея для этой цели колодку питания и делитель напряжения с кабелем длиной 10 м соответственно. Устройство приборов ДП-5А (Б) и ДП-5В. В комплект прибора входят: футляр с ремнями; удлинительная штанга; колодка питания к ДП-5А (Б) и делитель напряжения к ДП-5В; комплект эксплуатационной документации и запасного имущества; телефон и укладочный ящик. Прибор состоит из измерительного пульта; зонда в ДП-5А (Б) или блока детектирования в ДП-5В /, соединенных с пультами гибкими кабелями ; контрольного стронциевриттриевого источника бета излучений для проверки работоспособности приборов (с внутренней стороны крышки футляра у ДП-5А(Б) и на блоке детектирования у ДП-5В). Измерительный пульт состоит из панели и кожуха. На панели измерительного пульта размещены: микроамперметр с двумя измерительными шкалами ; переключатель поддиапазонов ; ручка «Режим» 6 (потенциометр регулировки режима); кнопка сброса показаний («Сброс») ; тумблер подсвета шкалы ; винт установки нуля ; гнездо включения телефона . Панель крепится к кожуху двумя невыпадающими винтами. Элементы схемы прибора смонтированы на шасси, соединенном с панелью при помощи шарнира и винта. Внизу кожуха имеется отсек для размещения источников питания. При отсутствии элементов питания сюда может быть подключен делитель напряжения от источников постоянного тока. Воспринимающими устройствами приборов являются газоразрядные счетчики, установленные: в приборе ДП-5А — один (СИЗБГ) в измерительном пульте и два (СИЗБГ и СТС-5) в зонде; в приборе ДП-5В — два (СБМ-20 и СИЗБГ) в блоке детектирования. Зонд и блок детектирования представляет собой стальной цилиндрически корпус с окном для индикации бета излучения, заклеенным этилцеллюлозной водостойкой пленкой, через Которую проникают бета частицы. На Корпус надет металлический поворотный экран, который фиксируется в двух Положениях («Г» и «Б») на зонде и в трех положениях («Г», «Б» и «К») на блоке детектирования. В положении «Г» окно корпуса закрывается экраном и в счетчик могут проникать только гамма лучи. При повороте экрана в положение «Б» окно корпуса открывается и бета частицы проникают к счетчику. В положении «К» контрольный источник бета излучения, который укреплен в углублении на экране, устанавливается против окна и в этом положении проверяется работоспособность прибора ДП-5В. На корпусах зонда и блока детектирования имеются по два выступа, с помощью которых они устанавливаются на обследуемые поверхности при индикации бета зараженности. Внутри корпуса находится плата, на которой смонтированы газоразрядные счетчики, усилитель-нормализатор и электрическая схема. Футляр прибора состоит: ДП-5А — из двух отсеков (для установки пульта и зонда); ДП-5В — из трех отсеков (для размещения пульта, блока детектирования и запасных элементов питания). В крышке футляра имеются окна для наблюдения за показаниями прибора. Для ношения прибора к футляру присоединяются два ремня. Телефон состоит из двух малогабаритных телефонов типа ТГ-7М и оголовья из мягкого материала. Он подключается к измерительному пульту и фиксирует наличие радиоактивных излучений: чем выше мощность излучений, тем чаще звуковые щелчки. Из запасных частей в комплект прибора входят чехлы для зонда, колпачки, лампочки накаливания, отвертка, винты. Подготовка прибора к работе проводится в следующем порядке: извлечь прибор из укладочного ящика, открыть крышку футляра, провести внешний осмотр, пристегнуть к футляру поясной и плечевой ремни; вынуть зонд или блок детектирования; присоединить ручку к зонду, а к блоку детектирования — штангу (используемую как ручку); установить корректором механический нуль на шкале микроамперметра; подключить источники питания; включить прибор, поставив ручки переключателей поддиапазонов в положение: «Реж.» ДП-5А и «А» (контроль режима) ДП-5В (стрелка прибора должна установиться в режимном секторе); в ДП-5А с помощью ручки потенциометра стрелку прибора установить в режимном секторе на «Т». Если стрелки микроамперметров не входят в режимные сектора, необходимо заменить источники питания. Проверку работоспособности приборов проводят на всех поддиапазонах, кроме первого («200»), с помощью контрольных источников, для чего экраны зонда и блока детектирования устанавливают в положениях «Б» и «К» соответственно и подключают телефоны. В приборе ДП-5А открывают контрольный бета-источник, устанавливают зонд опорными выступами на крышку футляра так, чтобы источник находился против открытого окна зонда. Затем, переводя последовательно переключатель поддиапазонов в положения «X 1000» ,«Х 100», «X 10», «X 1» и «X 0,1», наблюдают за показаниями прибора и прослушивают щелчки в телефонах. Стрелки микроамперметров должны зашкаливать на VI и V поддиапазонах, отклоняться на IV, а на III и II могут не отклоняться из-за недостаточной активности контрольных бета источников. После этого ручки переключателей поставить в положение «Выкл.» ДП-5А и «А» — ДП-5В; нажать кнопки «Сброс»; повернуть экраны в положение «Г». Приборы готовы к работе. Радиационную разведку местности, с уровнями радиации от 0,5 до 5 Р/ч, производят на втором поддиапазоне (зонд и блок детектирования с экраном в положении «Г» остаются в кожухах приборов), а свыше 5 Р/ч — на первом поддиапазоне. При измерении прибор должен находиться на высоте 0,7—1 м от поверхности земли. Степень радиоактивного заражения кожных покровов людей, их одежды, сельскохозяйственных животных, техники, оборудования, транспорта и т. п. определяется в такой последовательности. Измеряют гамма-фон в месте, где будет определяться степень заражения объекта, но не менее 15—20 м от обследуемого объекта. Затем зонд (блок детектирования) упорами вперед подносят к поверхности объекта на расстояние 1,5—2 см и медленно перемещают над поверхностью объекта (экран зонда в положении «Г»). Из максимальной мощности экспозиционной дозы, измеренной на поверхности объекта, вычитают гамма-фон. Результат будет характеризовать степень радиоактивного заражения объекта. Для определения наличия наведенной активности техники, подвергшейся воздействию нейтронного излучения, производят два измерения — снаружи и внутри техники. Если результаты измерений близки между собой, это означает, что техника имеет наведенную активность. Для обнаружения бета излучений необходимо установить экран зонда в положении «Б», поднести к обследуемой поверхности на расстояние 1,5—2 см. Ручку переключателя поддиапазонов последовательно поставить в положения «X 0,1», «X 1», «X 10» до получения отклонения стрелки микроамперметра в пределах шкалы. Увеличение показаний прибора на одном и том же поддиапазоне по сравнению с гамма измерением показывает наличие бета излучения. Если надо выяснить, с какой стороны заражена поверхность брезентовых тентов, стен и перегородок сооружений и других прозрачных для гамма- излучений объектов, то производят два замера в положении зонда «Б» и «Г». Поверхность заряжена с той стороны, с которой показания прибора в положении зонда «Б» заметно выше. При определении степени радиоактивного заражения воды отбирают две пробы общим объемом 1,5—10 л. Одну — из верхнего слоя водоисточника, другую — с придонного слоя. Измерения производят зондом в положении «Б», располагая его на расстоянии 0,5-1 см от поверхности воды, и снимают показания по верхней шкале. На шильниках крышек футляра даны сведения о допустимых норм радиоактивного заражения и указаны поддиапазоны, на которых они измеряются. Средства химической разведки и контроля заражения Обнаружение и определение степени заражения отравляющими и сильнодействующими ядовитыми веществами воздуха, местности, сооружений, оборудования, транспорта, средств индивидуальной защиты, одежды, продовольствия, воды, фуража и других объектов производится с помощью приборов химической разведки или путем взятия проб и последующего анализа их в химических лабораториях. Основным прибором химической разведки является войсковой прибор химической разведки (ВПХР), а также аналогичный ему по тактико-техническим характеристикам и принципу действия полуавтоматический прибор химической разведки ППРХ. Для обнаружения СДЯВ используются различного вида в зависимости от характера производства промышленные приборы. Кроме того, некоторые объекты народного хозяйства могут быть оснащены приборами химической разведки медицинской и ветеринарной службы (ПХР-МБ). Принцип обнаружения и определения ОВ приборами химической разведки основан на изменении окраски индикаторов при взаимодействии их с ОВ. В зависимости от того, какой был взят индикатор и как он изменил окраску, определяют тип ОВ, а сравнение интенсивности полученной окраски с цветным эталоном позволяет судить о приблизительной концентрации ОВ в воздухе или о плотности заражения. Восковой прибор химической разведки ВПХР предназначен для определения в воздухе, на местности и технике ОВ типа Ви-Икс, Зарин, зоман, иприт, фосген, синильная кислота и хлорциан. Устройство ВПХР. Прибор состоит из корпуса с крышкой и размещенных в них: ручного насоса , насадки к насосу , бумажных кассет с индикаторными трубками , защитных колпачков , противодымных фильтров , электрофонаря, грелки и патронов к ней . Кроме того, в комплект прибора входит лопатка для взятия проб , штырь , «Инструкция по эксплуатации», памятка по работе с прибором, памятка по определению ОВ типа зоман в воздухе, плечевой ремень с тесьмой. Масса прибора — 2,3 кг, чувствительность к фосфорорганическим ОВ — до 5-10-6 мг/л, к фосгену, синильной кислоте и хлорциану — до 5-10-3 мг/л, иприту — до 2*10-3 мг/л; диапазон рабочих температур от —40 до +40°С. Ручной насос (поршневой) служит для прокачивания зараженного воздуха через индикаторную трубку, которую устанавливают для этого в гнездо головки насоса. При 50—60 качаниях насосом в 1 мин через индикаторную трубку проходит около 2 л воздуха. На головке насоса размещены нож для надреза и два углубления для обламывания концов индикаторных трубок; в ручке насоса — ампуловскрыватели. Насадка к насосу является приспособлением, позволяющим увеличивать количество паров ОВ, проходящих через индикаторную трубку, при определении ОВ на почве и различных предметах, в сыпучих материалах, а также обнаруживать ОВ в дыму и брать пробы дыма. Индикаторные трубки, расположенные в кассетах ,предназначены для определения ОВ и представляют собой запаянные стеклянные трубки, внутри которых помещены наполнитель и ампулы с реактивами. Индикаторные трубки маркированы цветными кольцами и уложены в бумажные кассеты по 10 шт. На лицевой стороне кассеты дан цветной эталон окраски и указан порядок работы с трубками. Для определения ОВ типа Си-Эс и Би-Зет предназначены трубки ИТ- 46. В комплект ВПХР они не входят и поставляются отдельно. Защитные колпачки служат для предохранения внутренней поверхности воронки насадки от заражения каплями ОВ и для помещения проб почвы и сыпучих материалов при определении в них ОВ. Противодымные фильтры применяют для определения ОВ в дыму, малых количеств ОВ в почве и сыпучих материалах, а также при взятии проб дыма. Они состоят из одного слоя фильтрующего материала (картона) и нескольких слоев капроновой ткани. Грелка служит для подогрева индикаторных трубок при пониженной температуре окружающего воздуха от –40 до +10°С. Она состоит из пластмассового корпуса с двумя проушинами, в которые вставляется штырь для прокола патрона, обеспечивающего нагревание. Внутри корпуса грелки имеется четыре металлические трубки: три — малого диаметра для индикаторных трубок и одна — большого диаметра для патрона. Определение ОВ в воздухе. В первую очередь определяют пары ОВ нервно- паралитического действия, для чего необходимо взять две индикаторные трубки с красным кольцом и красной точкой. С помощью ножа на головке насоса надрезать, а затем отломить концы индикаторных трубок. Пользуясь ампуловскрывателем с красной чертой и точкой, разбить верхние ампулы обеих трубок и, взяв трубки за верхние концы, энергично встряхнуть их 2—3 раза. Одну из трубок (опытную) немаркированным концом вставить в насос и прокачать через нее воздух (5—6 качаний), через вторую (контрольную) воздух не прокачивается и она устанавливается в штатив корпуса прибора. Затем ампуловскрывателем разбить нижние ампулы обеих трубок и после встряхивания их наблюдать за переходом окраски контрольной трубки от красной до желтой. К моменту образования желтой окраски в контрольной трубке красный цвет верхнего слоя наполнителя опытной трубки указывает на опасную концентрацию ОВ (Зарина, зомана или Ви-Икс). Если в опытной трубке желтый цвет наполнителя появится одновременно с контрольной, то это указывает на отсутствие ОВ или малую его концентрацию. В этом случае определение ОВ в воздухе повторяют, но вместо 5—6 качаний делают 30—40 качаний насосом, и нижние ампулы разбивают после 2—3-минутной выдержки. Положительные показания в этом случае свидетельствуют о практически безопасных концентрациях ОВ. Независимо от полученных показаний при содержании ОВ нервно-паралитического действия определяют наличие в воздухе нестойких ОВ (фосген, синильная кислота, хлорциан) с помощью индикаторной трубки с тремя зелеными кольцами. Для этого необходимо вскрыть трубку, разбить в ней ампулу, пользуясь ампуловскрывателем с тремя зелеными чертами, вставить немаркированным концом в гнездо насоса и сделать 10—15 качаний. После этого вынуть трубку из насоса, сравнить окраску наполнителя с эталоном, нанесенным на лицевой стороне кассеты. Затем определяют наличие в воздухе паров иприта индикаторной трубкой с одним желтым кольцом. Для этого необходимо вскрыть трубку, вставить в насос, прокачать воздух (60 качаний) насосом, вынуть трубку из насоса и по истечении 1 мин сравнить окраску наполнителя с эталоном, нанесенным на кассете для индикаторных трубок с одним желтым кольцом. Для обследования воздуха при пониженных температурах трубки с одним красным кольцом и точкой и с одним желтым кольцом необходимо подогреть с помощью грелки до их вскрытия. Оттаивание трубок с красным кольцом и точкой производится при температуре окружающей среды О0С и ниже в течение 0,5—3 мин. После оттаивания трубки вскрыть, разбить верхние ампулы, энергично встряхнуть, вставить в насос и прососать воздух через опытную трубку. Контрольная трубка находится в штативе. Далее следует подогреть обе трубки в грелке в течение 1 мин, разбить нижние ампулы опытной и контрольной трубок, одновременно встряхнуть и наблюдать за изменением окраски наполнителя. Трубки с одним желтым кольцом при температуре окружающей среды +15°С и ниже подогреваются в течение 1—2 мин после прососа через них зараженного воздуха. В случае сомнительных показаний трубок с тремя зелеными кольцами при определении в основном наличия синильной кислоты в воздухе при пониженных температурах необходимо повторить измерения с использованием грелки, для чего трубку после прососа воздуха поместить в грелку. При определении 0В в дыму необходимо: поместить трубку в гнездо насоса; достать из прибора насадку и закрепить в ней противодымный фильтр; навернуть насадку на резьбу головки насоса; сделать соответствующее количество качаний насосом; снять насадку; вынуть из головки насоса индикаторную трубку и провести определение ОВ. Определение ОВ на местности, технике и различных предметах начинается также с определения ОВ нервно-паралитического действия. Для этого, в отличие от рассмотренных методов подготовки прибора, в воронку насадки вставляют защитный колпачок. После чего прикладывают насадку к почве или к поверхности обследуемого предмета так, чтобы воронка покрыла участок с наиболее резко выраженными признаками заражения, и, прокачивая через трубку воздух, делают 60 качаний насосом. Снимают насадку, выбрасывают колпачок, вынимают из гнезда индикаторную трубку и определяют наличие ОВ. Для обнаружения ОВ в почве и сыпучих материалах готовят и вставляют в насос соответствующую индикаторную трубку, навертывают насадку, вставляют колпачок, затем лопаткой берут пробу верхнего слоя почвы (снега) или сыпучего материала и насыпают ее в воронку колпачка до краев. Воронку накрывают противодымным фильтром и закрепляют прижимным кольцом. После этого через индикаторную трубку прокачивают воздух (до 120 качаний насоса), выбрасывают защитный колпачок вместе с пробой и противодымным фильтром. Отвинтив насадку, вынимают индикаторную трубку и определяют присутствие ОВ. Содержание 1.Дозиметрические приборы а)ДП-5А(Б,В) б)ДП-22В(24В) в)ИД-1 2. Средства химической разведки и контроля заражения а) ВПРХ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ДОНЕЦКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Кафедра БЖД и ГО На тему: Приборы радиационной и химической разведки Выполнил ст.гр.МОД-00а Ломухин Владимир Проверил Чубенко А.В. ДОНЕЦК-2002 |
|